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ABSTRACT 

In the second part of this paper we complete the program set 

forth In the first part (l). We continue the discussion of the 

kinetic expansions of the Liouville equation. Finally we intro- 

duce and discuss the "superkinetic" expansions. The numbering of 

sections continues that of the previous paper. 
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SECTION 9 

THE SHORT-RANGE THEORY 

We consider the hierarchy (6.15) with the choice of para- 

meters (6.17)| that is we assume: 

^-€«1, 5*t- l (9-1) 
Therefore, 

_—f- A/ /-  C= ^ r (9>2) 

Since the perturbation expansions: 

f = f *£-f + £Zfz*. ,. 5"-/    (9.3) 

p5a F*%£F*V£>F
S%.,,.      S*/ (9.4) 

give, just a for a weakly-coupled gas, a linear growth with time 

we choose an extension: 

with coordinates for the embedded domain: 

(9.J>) 

^ " &i   %   » £ *, , . . 2£ » 6 *V, . » . (9.6) 

From (9.2) we find accordingly, for s = 1 

££. - 0 {9-7) 

-1 - 



<^1 " ' ' • ..*..(•■ ..--....-.,',"...■ . *        * ] 

a* 

££+££'   fir 
$t.  st,   ft, **=.+z±.*i*« 

(9.8) 

(9.9) 

For the two-body distribution function we have. 

(9.10) 

(9.11) 

So 

**o $r,     «?£     *» 
For the three-body distribution function: 

+ #*FJ\Q 

sr0 
¥o 

(9.12) 

(9.13) 

(9.14) 

(9.15) 
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It will be clear later that we are carrying the approximation 

to one order higher than it is physically meaningful to do so. 

The purpose of such a calculation is to show the breakdown of the 

asymptotic series. It will be useful to keep in mind the orbit 
equations: ^ - 

*«&;*«   \>ty (9.16) 

4JU 

which correspond to Hamilton's equations 

(9.IT) 

(9.18) 

—<- (9.19) 

The orbit equation can be written in another form if we use 
• 6 

*l(t)*X;fo)+f v;(z)d} (9.20) 

*i(i)~£(*)+fiitXUl (9.21) 

where $  denotes integration along the orbit. Since we have, 
by (9.21): s 

= e iL (o) 
(9.22) 
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substitution of (9.17) and (9.22) into (9.20) and (9.21) respectively 
gives: 

Hfs6 

X;M~*c^e~f±V;fr) 
W 

(9.23) 

(9.24) 

Equation (9.23) constitutes the formal solution to the s-body 
problem. 

A. The Simple Initial Value Problem 
The definition of this problem is identical to the one 

adapted in the weak-coupling expansion. 

(i) Zeroth-Order Theory 
The one-body function is constant: 

o 

/?*> £' (9.25) 

For the s-body function we have, from (9.11) and (9.14): 

(9.26) 

which expresses the fact that initially uncorrelated particles 
are very quickly correlated by collisions. We adopt the notation: 

with the convention 5  == S ("^ 
write (9.26) as 

(9.2?) 

We can therefore re- 

E (K)-SY-%)77/-5V7 (9.28) 

r. 
- 4 - 
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(ll) First-Order Theory (Boltzmann's Equation) 

Substituting (9.26) Into (9.8) we find 

(9.29) 

Therefore, In view of (9.25) 

2£ 
9z, Ls*rr (9.30) 

X  remains as a transient; schematically (where (10.6) Is 

already Implied): 

W**) 

Fig. 14. 

This is Bogolubov's form of Boltzmann's equation. It can be trans- 

formed into the familiar Boltzmann form (6.25) if one keeps In 

mind that for purely repulsive two-body potentials there is no 

binding and therefore 

9s*(0fo—*o (9.31) 

- 5 - 
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This asymptotic condition gives the useful identity 

'.5 ,-S K*s*~isss 
(9.32) 

One then must perform Bogolubov's "cylindrical" integration. The 

geometry of the collision is shown in Figure 15. 

t\ 

k 

gctt 

Pig. 15. 

S      is the axis of the integration, 3  * - ""X* 

Figure 15 shows the connection between the kinetic argument and 

the statistical dynamical one. 

From (9.12) we have, using (9.30) 

- 6 - 
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9T. 

sfafe^sJ+LZsivf (9.33) 

which gives 

.06 El? wlxf-sjL^L^y^ir    (9.3*) 
This formula is improper because it contains a divergence. Its 

importance will be clear shortly. 

Prom (9.15)* we find for the three-body distribution: 

%h%^l«V^]-i,sjJr 
(9.35) 

(iii) Second-Order Theory 

Prom (9.9) we have, with (9-34) 

9£\ #' £f^ 
<?Z    3%   at,.    5 (9.36) 

- 7 - 
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where we have Introduced the operator valued distribution 

(9.37) 

We shall also consider: 

Kir). [7-"»M 
Prom (9135) if X   is to remain bounded 

(9.38) 

^ig-Ltfrf-tfiA^^sftr (9. 
The right hand side is schematized in Pig. 16. 

39) 

L 

i2 ' 

Pig. 16. 
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(iv) The "Bogolubov Problem" and the Choh-Uhlenbeck Formula 
The right hand side of (9.39) Is Identical to theirof 

Choh and Uhlenbeck, The Choh-Uhlenbeck formula results, according 
to them, by the two following stepsr    Call the curly bracket in 
(9.39), then 

L S*A - UM** I* f*~^<« -A 
4» 

/^ OO ,2- 

-  <ix L d yz 
«? \ -*0„ ji       (9.4o) 

(X'+&U-WAdxA 

where the equation of motion of e*f> (-ft X) has been used. 
By spatial homogeneity the ~7fz      contribution is first set equal 
to zero. According to Choh-Uhlenbeck then the upper limit of the 
integration does not contribute. Therefore, 

LS*A*~    dxjyjl (9.41) 

r #' o It is clear that since J. is a transient, i.e. "«r~ 9^ 
one can choose ± ("t = Q ) so as to insure 

/ 

f   > 0 (9.42) 

This choice is different from that of the simple initial value 
problem. The choice (9.42) generalized to 

K -*  0 (9.43) 

and supplemented by 

- 9 - 
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will be called the "Bogolubov problem". This Is closely analogous 

to the "Enskog problem" of the transition to fluid dynamic (see 

Section 15). 

Referring back to the basic equations of the short-range 

theory (9.7) to (9.15) we readily see that Bogolubov's problem 

leads to the following equations. In zeroth order: 

i-(?o)~t (9.45) 

\\ < fS6(rJ—>s*7Tf 

In first order: 

Z0 -*»*ö 

Or« 

(9.46) 

i£. LS('£ (9.47) 

which agrees with  (9«30) and 

r r. 
The Boltzmann equation therefore follows. In addition we have, 

for the two-body function (9.34). Furthermore, from (9.36) we 

now conclude 

Ifus^-sjL^ijJ^/j if (9.48) 

The Choh-Uhlenbeck theory consists in the restriction: 

- 10 - 
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(v) Conclusion of the Second-Order Theory 

We included the discussion of Section (iv) in the second- 

order theory in view of the special interest it holds and the 

crucial role it plays in a deeper insight into the kinetic theory. 

We now complete the second-order theory. The H-theorem for 

the Boltzmann equation (9.30) insures that 

where M is the Maxwellian distribution of thermodynamic 

equilibrium with density f     ,  mean flow velocity t(      and tempera- 

ture T: 

JlzäL 
M- -I— äAkX (9-51) 

If we now analyze (9.39) for large values of Zt    ,  we have: 

£L*£jL. L*vr)f'SUU^]<$*y*o (9.5.) 

We can therefore choose 

J^rzO (9-53) 

and 

£^rfr)fsj4AMs Q<M' <?% 
(9.54) 

- 11 - 
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which can be rewritten as an explicit quadrature: 

(9.55) 

must be found from the Boltz- 

is  2£  independent, we can set: 

(9.56) 

This concept will be 

where the /*  dependence of T 

mann equation (9.30). Since -f 

This is the first example of closure, 

further discussed in Section 13. 

The physical meaning of the choice (9.53) and (9.54) is the 

following. For a spatially homogeneous gas there are basically 

only two stages in the evolution towards equilibrium. 

In the first or pre-kinetic stage fSfs>/) becomes 
1        1       ~ synchronized to F  while F_2 itself does not change. This 

"freezing" of the correlations, which is due to the energy mo- 

mentum balance in the collisions, occurs on the time scale 2£ 

whose unit is K A i.e. the duration of one collision. 

The mathematical expression of this synchronization is given by 

the formulae (9.28) and (9.25). 

In the second stage or kinetic stage, the one-body function 

suffices to characterize the evolution of the system in time. 

In fact the one-body function satisfies an equation (the Boltz- 

mann equation (9.30)) which determines it independently of any 

knowledge of the two, three-body distributions. The time scale 

for the kinetic stage is 7^ whose unit is 

ä '0 

'■<*, u nr 
. A 

% 

(9.57) 

- 12 
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where A  Is the mean free path. It is clear therefore that the 

unit of the f.        scale is the time between two successive col- 
lisions. Boltzmann has shown that a gas that satisfies his 

kinetic equation tends of necessity to equilibrium: 

<ty 
\ )£° tyi'dv £ 0 (9.58) 

On this scale there- with the equal sign implying J, s LL 
s fore the already synchronized F  functions will reach their 

equilibrium values. 
It is therefore to be expected that after the asymptotic 

limit has been reached no further evolution can occur In the gas. 
(This of course does not prevent fluctuations). The "closure" 

condition (9»53) expresses this basic fact. The method of ex- 
tension (Introduced in Section 3) is responsible for our ability 
to "pinch off" the asymptotic series at the place where it would 

be damaging. The fact that f^, as given by (9.55), is improper 
simply expresses the breakdown of the asymptotic expansion. 

We now turn to the two-body function in second order. Prom 

(9.13) 

23. 

21 

* 

Sfi"'4* 

<p% 
—zz.—     + L*r (9.59) 

where as 0 means asymptotic  in      % But we have 

S£ to, A3o 

JK 
._  ^L s^fTzo 
^ 

(9.60) 
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by  (9.56).    Also from (9.34): 

IT 

Finally, from (9.35) 

-LU%t^ l^t,X]+ 4 Sj?//' 

(9.61) 

(9.62) 

whence, substituting (9.60), (9.6l), and (9.62) into (9.59): 

ia 

^(^f^'U^Msp 

>K /U <AHsffa$, < 4, 5, <^jj Ö" 
(9.63) 

which represents the effect of four-body collisions on the two- 

body distribution function. 

(iv) Third-Order Theory 

Prom  (9.10) we have 

(9.64) 

Vro 

- 14 - 
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To have a well-behaved  _f  we require 

We can now require 

Jr. -o 

and also 

9i 1 4SI 

^ 

(9.65) 

(9.66) 

(9.67) 

which shows the consistency of the closure conditions. 

B. The Complete Initial Value Problem 

We now allow arbitrary initial correlations to be present in 

the gas. Prom (9.7)* again 

£'(%)-£ (9.68) 

from (9.11), 

-#2Z0r°r°      -*l£ 

S[£T+gtoj] 

°f(o) 
(9.69) 

Prom  (9.14), 

-# fc >« 
f- e h(o) 

(9=70) 

- 15 - 
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We obtain therefore In first-order 

(9.71) 

we oD-cain tnererore in rirsr-oraer 

jX^mU     iff*-!*)] 
The necessary and sufficient condition for the validity of 

Boltzmann's equation is accordingly (*j>o) 

When (9.72) Is fulfilled, the behavior of jf  is transient as 

for the simple initial value problem, but of course considerably 

more complex. 

For the two-body function we have, from (9,12): 

+L/\t£+&'/(*)+WJz-Sjrßr+lMji. (9.73) 

+Us3[M°+£i\M+k°(°)] 
whence 

E^{^[ir*^£fffr*xri^i%^ (9.7^) 

Substitution of  (9-74) into: 

#\<tf\ Jf      ,-r*( r 2 
(9.75) 

- 16 - 
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A kinetic condition can be extracted from this equation only if 

L
l7m*>     'l^S* ip6^ y^>     (7l>°)  (9'76) 

o     ~0 

and 

L^LX'ito i 

5  ?"* (y>o) <9-77» 

These conditions are of interest because they are required by 
closure. 

- 17 - 
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SECTION 10 

THE LANDAU EXPANSION 

A. The Expansion 

In order to establish the relation between the short range 

theory and the weak coupling expansion, we shall have to consider 

the dilute, weakly coupled gas. It is clear from Pig. 10 that 

if we expand the short range results in powers of 

w) 
we will not obtain the formulae for a weakly coupled gas but 

rather those for a dilute weakly coupled gas. Also, if we expand 

the weak coupling formulae in the dilution parameter (ftYyJ 
we shall find a dilute weakly coupled regime. The expansion of 

the short range theory in powers of 

will be called the Landau expansion» 

The basic formula that we shall employ is (2*12) applied to 

7/*XSf 
-(X-6IX    -*V, *'*' + Ge yp*'is*]<t* 

(10.1) 

<■ 0(£') 
(i) Zeroth order theory. Prom (9.25) and (9.26) we find 

f(V >£' (10.2) 

18 
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F*^.).*   ^ir(+e&     e  Je   <av± 

5/>6 

? 
ir+esVrtfrt 

(10.3) 

(ii) First-Order Theory. 

We rewrite the Boltzmann equation (9.30) exploiting the fact 

that only the two-body correlation rather than the complete two- 

body function contributes to the kinetic equation. Thus, for a 

spatially homogeneous gas: 

Lt(z.)-L(E'E'+3)--L£ 
We have from (9.26): 

2.0, 
■*** F~(*)-e"'*fr 

.rr+j«) 

(10.4) 

(10.5) 

Whence 

f (K>-(*'"*• -l)ff:- ^   '-^-»/yy 
•v 

-fTr. (10.6) 

X 
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where we have used 

XT£ - ö (10.7) 

For the Boltzmann equation (9.30) we have therefore 

(10.8) 

The result is the small momentum transfer equation of Landau. 

This result also follows from (10.3). 
21 The Landau expansion for the function F   is most readily- 

obtained from the equation (9*12) that it satisfies. Thus, we 

can write 

l-e** ^i{1S^ ^'^kX(^X^(^Q< ^ir-fn 
We now let, simply 

And, substituting into (10.9): 

-=  t  A /f-O 

This gives 

(10.10) 

(10.11) 

(10.12) 
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to lowest order. 

The first order equation is 

(10.13) 

which gives: 

which corresponds to the second term of (7.87). The first term 
20 is the second Landau approximation for F  . 

To second order we find: 
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where spatial homogeneity has been used repeatedly. It is easy 

to see that the first term on the right hand side of (10.15) 

corresponds to (7»96), the second term to (7*97) and the third 

to (7.98). Therefore, the quantity F^ obtained from (lü.15) is 

divergent. We have thus established the connection between the 

breakdown of our asymptotic analysis in the short range and in 

the weak coupling expansions. 

Now, we want to give a more detailed mathematical description 

of our divergence. This is done in the next section. This 

section will be concluded by discussing rapidly but completely the 

dilute, weakly coupled gas directly from the Liouville equation. 

B. Dilute, Weakly Coupled Gas 

From the hierarchy (6.15) we obtain with the choice of 

parameters (6»19) 

J&"Ci-r (10.16) 

(10.17) 

(10.18) 

J6 
(10.19) 
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We consider the Bogolubov problem 

f 
■t    S 

<5 **d 

(i) Zeroth-Order Theory. 

We readily obtain 

and 

/Yfc)./ 

/ Crt)*ir£ 
(il) First-Order Theory. 

We have 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

Also, for the s-body distribution: 

*   ~ 6 

5*0X*)I
S

TT£ 

(10.24) 

(10.25) 
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(lii) Second-Order Theory. 

We find, for the one-body distribution 

£'<ty' £' (10.26) 

and 

fVn)-£2-o (10.27) 

For the s-body distribution, we find: 

S2 rvn)-e -**2: * **■ #^rs I -e -*
s,* 

iWf' (10.28) 

~0r*I)Y<r*l/?M 
% 
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which improves (10.25) by repeating the interaction process. 

(iv) Third-Order Theory. 

We find, for the single-body distribution, 

^S 
(10.29) 

which corresponds to (7-70) and 

3p   , r-** 
dt. --L hlYf ra   Z (10.30) 

'£ 

which corresponds to (7.73)' Similarly, for the two-body dis- 
tribution 

F- 

slLU^i^J^tlffr (10.31) 

The second term on the right hand side of (10.31) corresponds to 

(7.92).  Clearly the correspondence cannot be term by term to all 
orders. 

For the three-body function we have: 

E.>3~(?«7y(ri)3f5*if-frf + 

(10.32) 

^jri^U^Ujif 
24 
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(v) Fourth-Order Theory. 

We have, for the kinetic condition: 

while the two-body distribution satisfies 

2*. ~       iC    «?*; V«;   ^"V^    (10-34) 

but
 ^     aJ -**> 

^ O 
J?t ?Z^ (10.35) 

and 

Also, 

1* 

(10.37) 
%-{iti&*4 &q * 4 ri- % frtäj*?' 

Therefore, 
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-(5*AtU**D» * L» (&IW-      (10-38) 

■ft <W frU ^- frU frU J*f 
It is immediately clear that the very singular term in which the 

j    product appears does not cancel. In the next section, 

this persistent difficulty will become more transparent. 

(vi) Fifth-Order Theory. 

We can readily write the kinetic condition: 

*L1($*&(s*tftift- (10-39) 

This formal result has clearly surpassed the limits of validity 

of our asymptotic expansion.  In particular, one readily recognizes 

in the fourth term on the right hand side the contribution 
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SECTION 11 

THE CONFIGURATION SPACE 

In this section we first discuss a decomposition of the 
i 

configuration space of the four distribution functions F  to 
4 

F  in terms of the interaction sphere of each of the particles. 

We then show how this decomposition classifies the kinematic 

degeneracies in the n-body collisions. This analysis will make 

clear that we have "over corrected" for secularities in the re- 

gion of configuration space where our asymptotic expansion fails. 

It is a pleasure to acknowledge the collaboration of Prof. 

W. Hayes for the work of this section. 

A. Decomposition of the Configuration Space 

We remind the reader that we have confined ourselves to 

spatially homogeneous gases. 

(i) The one-body distribution function is completely in- 

dependent of position. Therefore, the one-body configuration 

space C , is one point. 

(ii) The two-body configuration space C  is the half line: 

\*J>° (11.1) 

We decompose    C      as follows 

' — »X « ° 
(11.2) 

and 

c1.- '* J* r« (11-3) 

p p 
C    is the  "outer" region,  C_ the  "inner", 
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(iii) The three-body confirmation space, C , is a non- 

euclidean three-dimensional manifold with a rather intricate 

topology. It decomposes into 8 regions: 

Cf' '*J>,f^ lx,3l>viy lx23]>rc (11.4) 

(11.5) 

corresponding to configurations in which all three bodies are out- 

side each other's interaction sphere, 

c£; /*,»/>«;_, Ixjx;, l*„|<ro 

for which there is a pair interaction, 

4' l*J<ro?    \&ll\<r.J   \x23\>r0 

(11.6) 

6$: l*J>r<;   U3|^,   l**K r„ 

Each of these regions corresponds to configurations in which two 

pairs are within each other's interaction spheres. Finally, 

d,-. UJ<rt/  Ix.sl^''.,  I*23l
<r° (11.7) 

for configurations in which all three pairs are interacting. 

This decomposition is difficult to visualize except for one- 

dimensional gases. We treat therefore this case in detail. For 
p 

the purpose of analyzing the divergence in F  due to three-body 
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collisions,  two integrals are of relevance 

wl 13 — 

At» ^f 
(11.8) 

the L operators providing a cut off outside certain strips. 

Thus, for the L-,o integral we consider: 

L/3  integral 

Pig.  18. 
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The C^ are disconnected regions whence the rather intricate 

topology. Clearly only the hatched horizontal strip contributes 

to A, • 
For the    Lpo     integral,  we consider instead: 

£23 integral 

A. 
Pig.   19- 

Clearly only the horizontal hatched strip contributes t: 

The inner squares of the two diagrams are particularly im- 

portant since they alone contribute to the rate of change of the 

one-body distribution, i.e. one has two successive cut-offs: 
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LJL^L^L^L^L^ (11.9) 

If one did not correct the time derivative this contribution 

would lead to a triple product integral for the correction to 

Boltzmann's equation. 

(iv) The four-body configuration space can be decomposed 

similarly. The system has six degrees of freedom which are con- 

veniently chosen as 

That is, all six distances. The corresponding sixty-four regions 

are readily defined. 

We have: 

1 region with no pairs interacting 

6 regions with one pair Interacting 

15 regions with two pairs interacting 

20 regions with three pairs interacting 

15 regions with four pairs interacting 

6 regions with five pairs Interacting 

1 region with six pairs interacting 

The four-body distribution is the highest for which it is possible 

to decompose the configuration space by means of the relative 

distances. The following types of integrals are those of relevance: 

corresponding to <) £ /& *-" 

(11.11) 
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= (Lls+LjX(L¥*^+ljE* (ii.i2) 

corresponding to ^jf %?"? 

corresponding to J?/*"/^^ 

B. Klnematical Degeneracies 

The decomposition of the configuration space is particularly- 

useful because it allows for a complete classification of the n- 

body collisions in which only *W ( /7)C hy     0f the bodies 

participate. In fact, the ft operator undergoes definite 

contractions in the different regions of configuration space. 

(i) Two-Body Degeneracies. 

Prom (11.2) and (11.3) we have: 

and 

c+: 

C2; 

(11.14) 

(11.15) 

Schematically, 

i\    *i 

Ci Pig. 20 
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Only the configurations belonging to C_ contribute to the col- 

lision integral. 

(ii) Three-Body Degeneracies. 

Referring to equations (11.4) to (11.7) we have 

Cs ■ y3—*rJ 
(11.16) 

in the region where no pairs interact. Also, 

C3 : 

C 

C 
3 

w 
#* 

(11.17) 

*^>< 

in the regions where only one pair interacts. Similarly, 

>3 

(11.18) 

iV' #* -> *"-I„ -I *3 
in the regions where two pairs interact. Finally in the region 

where all three pairs interact 

c3 ■ h ■ 
Schematically} 

// 
~P*-I     -I    -I (11.19) 
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t      / t 

Pig. 21 

The reduction of the Hamiltonian entails the existence of 

particular constants of the motion corresponding to the reduced 

number of bodies actually colliding. We turn now to a discussion 

of the effect of three-body collisions on the two-body function (13), 

We have, from (9-33) 

>/ 

2T0 ~ 

-M. I *L/*£rr-*n^^m 
(11.20) 

The second term on the right hand side of (11.20) is the 
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correction to the fclme derivative. That is, it equals 

and coincides asymptotically in 2^ with the quantity 

JW*"™' 
Of Bogolubov's synchronized technique. It represents de- 

generate three-body collisions which are "successive" two-body 

interactions. This contribution to F   grows linearly in 2£ 

by construction» The time derivative has been in fact corrected 

precisely to absorb the growing contributions of the direct per- 

turbation expansion» The linear growth of this term is in fact 

very readily proved directly. We have, rewriting slightly (lie20): 

(11.21) 

whence 

F-(r.).c"'Zfe"''lJ-(X)^ 

^•zUamti 
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Therefore, the contribution to £    )   oC from the second 

term on the right hand side is 

where, as in Section (9) the V. denote the asymptotic velocities 
in the two-body collision. 

In order that (11.20) give an &£- that can be con- 
sidered ö(€/ with respect to F , the "successive" two-body 
collisions must cancel against the direct three-body contribution 

L. F -    The divergence discussed before in the short- 
range theory as well as in the weak coupling and dilute weak 
coupling expansions correspond to the fact that the desired 
cancellation in fact fails. 

This important result is obtained by referring to formulae 
(11.16) to (11.19) for the reduction of the three-body Hamiltonian. 
We rewrite (11,20) in two different regions of C . 

The cancellation of the secularity is therefore complete in the 
"outer arms". However, in the "inner" region C 

(11.24) 

(11.25) 

if 
-  37 - 
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3 & 
there Is clearly no cancellation. We used the notation C; 0 C i 

to denote the union of Ci    and C:;. 

There is an intermediate region, Y0 < \K    {<.%*" , 

in which the cancellation also fails to be complete. 

The physical reason for the divergent contribution to the 

three-body collisions corresponds to the fact that successive 

two-body collisions have a very large (three-body) correlation 

length, of the order of \ (the mean free path), and give rise 

therefore to very persistent (in fact secular) contributions. It 

is clear however that the entire contribution from two-body col- 

lisions to the relaxation mechanism of the gas toward the 

equilibrium state is taken into account already (and completely) 

by the Boltzmann collision integral. If one is not wise enough 

not to count things twice, one: is left with a very big result! 
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SECTION 12 

DEBYE EXPANSION 

It is convenient to transform the hierarchy (6.15): 

-— + 7J-/--- r kr* ) 1—-~- 1/ A» g.t1tv.(>r!)y$i~r' (12.1) 

into the equations for the correlation functions. We will be 

concerned with both the two-body correlation g and the three- 

body correlation h. Substituting the cluster expansion (8.2), 

(8.3), (8.4) into (12.1) we find after some calculation: 

jf*^!)&?h (12.2) 

^'(^ijj^uU^i.K, (12.3) 

and 
d 

U ' M- ^)[^%3^^U%^>^\Aur-^- 
<t>. 

(^%*k)IU$j3/u^lJu%s%%3) 
+lJ%&S%+Uy L^F,K,^^F,kt3^L!VF3 U^+ 

(12.4) 

+ L3 K» 
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where  K  is the four-body correlation function. If we now in- 

troduce the choice (6.18) for the basic parameters, 

—r= € r\rl *■? (12.5) 

and introduce the extension coordinates (7.29) together with 

(12.6) 

h =r* A 
we find immediately that the equations do not decouple at all in 

lowest order. We introduce now the simplifying assumptions 

%*o(e), A-qffe^  k-o(e*) (12.7) 

This choice is in the spirit of the simple initial value problem, 

We find immediately for the one-body distribution: 

Mr. 
-o (12.8) 

(12.9) 

*z    fir,    ^ ~Ll 
ji (12.10) 
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The two-body correlation satisfies: 

and 

I 

(3 
(12.11) 

(12.12) 

The three-body correlation satisfies: 

•/-     (12.13) 

'3/ -3^32,^ 

Prom (12.8), we have immediately: 

The equation (12.11) for jr. is an integrodifferentlal 

equation in which all the time dependence is In the quantity g .% 
We can rewrite it as: 
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where 

is a linear operator on j^;. The solution of (12.15) is 

•i 

-4 

(12.17) 

We shall be concerned with the simple initial value problem 

and therefore only the second term is of interest. We then have 

(12.18) 

I' Before we proceed, we shall make the £   dependence of the 

propagator more explicit. For this purpose, we consider now the 
homogeneous equation: 

(12.19) 9K +(x*-r)e * o 
whose solution is 

cft>.*v*fc#./2'*<W 

The Debye operator XZ.   can be factorized as a product (l4) 

(12.21) &>-4A 
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corresponding to the product solutions of (12.19): 

where 

The G, satisfy in fact: 

or, making explicit the Ü  and  Z.  operat ors: 

^z, 9+-v?5'-M?,f^k^ -0 

(12.22) 

612.23) 

(12.24) 

Taking the Laplace transform with respect to %  and Pourie: 
transform with respect to Xj  : 

f>V'<t *i' $ "-¥/ • ;? wfa r. - G/<) (12.25) 

from which 

Gj (c) 
1 ■ -.— %ii • «£' U&)U/ y + - J 

(12.26) 
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Integrating over V.'     we obtain an algebraic equation for 

'£>; (12.27) 

whence 

d\?&- -> 
"~3 £ 

1 + 

We  substitute   (12.28)  into   (12.26): 

(12.28) 

_ I^MLM: 
rw*** 
£ ""Ü ■£ 

'"'*/■*/      ^/<* 
I^-C-c^-o K3     tj      «.„ 

We have then 
* ^ ' # 

(12.29) 
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Gift)* airl (12.30) 

where, as usual, the contour C Is parallel to the Imaginary- 

axis and to the right of the origin. The somewhat intricate P 

dependence of  Q makes it difficult to see explicitly the Zc 

dependence of   &# 

We now insert (12.It) into (12.9): 

*« 

(12.31) 

where we have introduced the  ''dielectric constant" operator £   by 

£ 5*(i[f *-/"]) s 57'"x") (12.32) 

The form (12.31) of the kinetic equation suggests the connection 

with the Landau equation. This is established by a "polarization 

expansion" in powers of f*      which is analogous to the "momentum 
p 

transfer" expansion in powers of 1  . 

To obtain the next approximation in the theory, we must 

solve the equation (12.13) for h_. It is clear first of all that 

there are product solutions of the type (12.23). We can write 

H 

(12.33) 
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where the   J).* operators denote here 

'J 
and where 

« * IT-Ay -/ryy; 

/IL-^'-UVK«: 23*     2^2, 2/5^ %/j Ä/a.^ 

We can therefore write: 

-L4ri)Jt%i-(s"i)js*i)J + 

(12.39) 

(12.35) 

(12.36) 
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where 

¥**$*(<[x'-rf?) (12.37) 

From (12.12) we find for the second order two-body cor- 

relation function, 

(12.38) 

We recognize immediately in the second term on the right hand 

side of (12.38) the very singular contribution with two coincident 

Formally, we have now, using (12.10): 

-G/M3 

- 4? 
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Thi£. equation represents the correction to the kinetic equa- 

tion of Bogolubov and Lenard. We have separated the right hand 

side into two-, three-, and four-body contributions. The 

presence of this latter in second-order emphasizes the great 

differenöe that exists between the Debye expansion and either the 

short range or the weak coupling expansions. We have 

schematically: 
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+ 

-h 

f#/#   f r r f °    /° /° f ° t 

Pig.   22. 
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For the Debye expansion, it is necessary to distinguish two 

types of complete initial value problems: the small correlation 

theory and the large correlation theory. The conditions for the 

former problem are of the somewhat intricate type 

Le ji^c'^lp+f (12.40) 
The latter problem is even more difficult. The zeroth-order 

hierarchy can be written as: 

ZSL-Zf-lV (12.41) 

where J#   is a vector with components fl £ p and the £ 

and £     operators are appropriate matrices. The solution of 

(12.41) is 

f(X)^'(Z--H'TCo) 
The kineticity conditions for this problem are therefore of the 

type 

ir%(%) x    „f (12.42) 

Our argument for the breakdown of the kinetic expansion is now 

complete. We have found exactly the same divergent contribution 

in all four the regimes of interest. 
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SECTION 13 

A GLOBAL THEORY 

In this section we shall be concr . j with the Liouville 

equation itself. We write, for a spatially homogeneous gas 

and 

<?t 

if' 
9t 

L* »?v* «.I 
I]F- 

-(»r>)(±r)UF 

(13.1) 

(13.2) 

where F is identical to F  and 

r      J ~\r v r 
(13.3) 

We want now to consider (13.1) and (13«2) as directly coupled, 

i.e. we bypass the BBGKY hierarchy. We use the same extension 

technique that we have useö so far. 

A* Weak Coupling Theory (15) 

Our perturbation equations for the N-body distribution function 
are: 

* re'* r -O 

*£'    ^r>   rrc   ?J_ 

(13.4) 

(13.5) 
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and for the one-body distribution function 

ttr ° (13-6) 

3Z0    Jtf (13.7) 

*«   ^    ^    ^~ (13.8) 

We confine ourselves to the simple initial value problem. 

The zeroth-order equations yield immediately: 

»<V^ ,   no 
£(%)~£° (13.9) 

and 

fa(^j^7r£6 (13.10) 

The first-order equations are also readily obtained by noting 

that: 

Lp 7T£ =. o (13.11) 

because of the spatial homogeneity of the gas. We have therefore: 

and 

>/ 
f-o (13.13) 

52 - 

"feS5>fe&r 



KZjei.+Jr±.*i ,Ju« -"■■« . 
-"«■ -~W -—W - rr»y-TT'"rTT ry^ f«r w^ \m V* V* V* r* <T" 5^ ^ 

Also., from (13.5) 

/to- 

/^ro 

X (13.14) 

Substituting this result into the second-order equation (13.8) 

(13.15) 

It is easy to verify, by means of a straightforward calculation 

that the coefficient of ( 7)^2) is in fact identically 

zero. This result establishes the Landau equation as a direct 

consequence of the Liouville equation. A similar calculation 

establishes the next kinetic term. The following order diverges, 

3. Short Range Expansion 

We have again    * *6 9£ 
= 0 

(13.16) 

For P_^ we obtain, for the simple initial value problem: 

£(%)*&      TTf (13.17) 

Prom (13.2): 

frZ-LSffzvH (13.18) 
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whence 

^-LsY^oM) 
(13.19) 

Since the last term on the right hand side is negligible to this 

order of approximation, (13.19) establishes the Boltzmann equation 

directly from the Liouville equation. 

We note that from (13.I) 

9£'   * c*      ?? 
~9r,+ w- ' "är, (13-20) 

Since the left hand side is Liouville's equation, we are now cor- 

recting our very first principles! From (13.17) it is clear that 

£ ~ K    Const (13.21) 

The arguments of the constant are the asymptotic values of the 

momentum in an N-body collision. We have clearly gone beyond 

the limit of validity of our asymptotic expansion. 

C. Master Equations 

We introduce 

r J     V    V       V 
We readily obtain, from (13.1) 

V 

(13.22) 

(13.23) 
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We now consider (13»23) coupled to (13.1). 

(1) Weakly coupled gas. We choose 

w**e< ' > :r~1 (i3-24) 

With the usual extension technique: 

FK=>F*} f*=^£K (13.25) 

the Liouvllle equation (l3„l) yields; 

J^ f /f £- » o (13.26) 

£W-/f-£ 

O 
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Prom (15.23) on the other hand we obtain 

•^=7 S O (13.29) 

(13.30) 
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^    3£    21°    j   r1 

J2r0    J2r,    J?^       *L (13.31) 

££l + £ä.\ &•'*££-1 F* 
ff*    <?2r,     *?*-    J?z~   C~ (13*32) 

The analog of the simple Initial value problem for the 

master equation is the "uniform" initial value problem by which 

we mean that the system of N-bodies is assumed to be initially in 

a state 

£.-4>K (13.33) 

such that positions and momenta are statistically independent and 

furthermore such that the configuration space density is perfectly 

uniform. By normalization 

k-i (13.34) 

Furthermore, we assume 

r   ' = 0 (13.35) 

Since (13-29) gives 

£(r,)=f (13.36) 

we find, from (13.26) 

(13.37) 
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Substituting this result into (13.30) we find 

-?*, * -j— - ^-ejr (13.38) 

But one readily verifies that 

Lc0**G (13.39) 
Whence, from (13.30) 

J^r    ~-0 (13.40) 

and 

t'-a 

(13.41) 

(13.42) 

Substitution into (13.27) gives 

jp + X£ -Ig0 (13.43) 

in virtue of (13.41). We readily solve (13.43) to obtain 

fCr.)-'-*'**' If (13.4,) 
where we used (13.35) to obtain 
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Substituting (13.44) into (13.31) 

(13.46) 

The requirement that the approximation be uniform yields im- 

mediately 

?r*    c        ' r (13.47) 

as well as the transient equation: 

j%  "'L-aje    dXlf (13.48) 

Equation (13.47) is a generalized master equation for a weakly 
coupled gas. 

We now continue the expansion by using (13.28) 

'Ö 
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where we have used 

QZ(~° (13.50) 

and the master equation (13.47). Prom (13.49), formally; 

F^S%-*)[l(5*l)-U (S*I)J£ 
whence from (13.32): 

0 

^"4r/r/M^ 
*r* 

(13.51) 

(13.52) 

This "correction" to the master equation is in fact divergent 
just as (13.51) is divergent. The infinite term is the one in 
which the S*     operates on l^ /\        which is a spatially 
homogeneous quantity. 

Once more the master equation (13.37) in the asymptotic lir.iiü 
of  &$/£& while the next term cannot be obtained by 
continuing the expansion. 

It is of considerable interest to consider initial distribu- 
tions which are not "uniform". We thus introduce the analog of 
the complete initial value problem by defining the momentum- 
coordinates correlation &*       : 

f~ 0 tCJ 

We now find to zeroth order: 

£(Z) -£ 

(13.53) 

(13.54) 
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but instead of (13.57): 

F0fa).f+e~**o>Yo) (13.55) 

The first-order equation (13.30) becomes therefore: 

-—• +- —£ ^ L„ e      Co (0) (13.56) 

In order that the initial statistical interdependence between 

momenta and coordinates be completely forgotten by the momentum 

distribution j»    on the fc     scale, we must have 

4 klfr)^     —>? ,   ??° 
We can then conclude for (13.40). 

Prom (13.27) we now obtain 

(13.57) 

(13.58) 

Substituting this result into (13.31)' 
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• 

9 V.      9K e    d^lft** 

±le~*2*f   **rr  -*A -M 2&V*) 
<^A/^_. -A.A.        CS \      _    ————— 'd) (13.59) 

The condition of validity of our master equation (13.47) is 

therefore that the second term on the right hand side of (13.59) 
should decay for large T        as —^        ^ 

(ii)    Dilute Gas. **     (        < 
We now assume: 

4. 
»IK 1 ~ x ; 

rl 
V -6 

Prom (13.1) we hl^ve 

*2; 

and from (l3.r>3) 

2$ 
9rö 

*o 

££ 
«?*/ 

(13.60) 

(13.61) 

(13.62) 

(13.63) 
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9p'       ££ 
Qt0       2% 

UF° 
(13.64) 

V 

i 
The zeroth-order theory yields 

(13.65) 

(13.66) 

and 
-*£ d     ,0 

Substituting this result into (}3.64): 

Jt0    3*f ~L<L     Sr^c^l 

(13.67) 

(13.68) 

Therefore, 

(13.69) 

This is the master equation for a dilute system (16). it is well 

to stress that "dilution" has different meanings here and in the 

short-range kinetic theory. 

From (13.62) 
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5x f//jf' 
(13.70) 

Therefore, formally: 

f h>-%*"%sf%-r.S£cfy (13.71) 

Substitution into (13.65) would lead to a finite result if the 

clock were modified. This, however, would be a purely formal de- 

vice in view of (13.71) itself. The generalized master equation 

(13.69) can be transformed by means of the identity: 

KS =.ls (13.7?.) 

Therefore 

to 

iJ 

3z, )   -   - v      y 

Z. J -c    -t  X  -' y    Y"      (13.73) 

J j » 

where use has been made of the spatial homogeneity of (p       ,    The 

more familiar form of the master equation corresponds to the two- 

body collision contribution to (13.73). 
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SECTION 14 

THEORY OP THREE-BODY COLLISIONS 

We have sou that the asymptotic expansion cf the Liouville 

equation that leads to the kinetic equations is insuffie lent to 

give a correct theory of three-body effect?. 

We retraced the difficulty to the fact that our expansions, 

that hinge on the one-body distribution function, do not count 

properly successive two-body collisions. Our abtention was 

focused on the one-body distribution because our main interest 

was the kinetic regime of a gas, i.e. a regime in v:hich a typical 

particle (or alternatively the average behavior of one particle) 

is sufficient to characterize the gas. We have also shown how we 

could "close11 the kinetic equations by exploiting the freedom of 

choice of solutions offered by our method of extension. Thus, our 

kinetic theory is closed and complete. 

We now put forward the thesis that a correct understanding of 

the three-body effects demands a different expansion of the 

Liouville equation; 'One that uses as its fundamental stochastic 

variable not the one-body distribution function, but rather the 

two-body distribution. 

The simple Initial value problem for the kinetic theory 

hinged on molecular chaos. For the three-body collisions theory 

one needs a more informative initial condition. This is provided 

uy  Kirkwood's "hypothesis" 

F3     -  FaJ\p3'_ (14.1) 

The calculations can be carried out by the methods discussed 

In our s'judy of the kinetic regime or in the synchronization 
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language of Bogolubov by assuming synchronization to F' 

finds for example, for short range forces, 

One 

3t 1TF' (14.2) 

The conditions for the validity of (l4.2) are readily written in 

terms of 

3 
&5- F3-F 

in a manner analogous to that of the complete initial value problem 

of the kinetic theory. One readily verifies that the equation for 

P  implied by (l4.2) gives the Boltzmann equation when molecular 

chaos is inserted in (l4.l). 

This theory contains one unsatisfactory aspect: It has not 

been possible as yet to construct a monotonic     function. 

The next higher level of approximation to the Liouville equa- 

tion contains a chaos condition analogous to (l4.1) that relates 
4     3 P  to FJ. Prof. W. Hayes has shown that the normalization of 

any such condition must defend on the state of the gas. 
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SECTION 15 

INHOMOGENEOUS GAS AND HYDRODYNAMICS 

Inhomogeneities are of fundamental interest in the theory of 

gases. 

Their first appearance is with the bulk limit which is treated 

properly only by means of a wall potential. Clearly, the presence 

of external fields other than the walls induce inhomogeneities 

which are of considerable interest. A first approach to this 

problem has been given with the collaboration of Dr. J. McCune (17), 

Lastly, inhomogeneities which are simply given are very im- 

portant. We shall confine ourselves here with two remarks on this 

situation. 

A. Kinetic Equations for Inhomogeneous Gases 

We consider only the weakly coupled gas. The perturbation 

equations are: 

3tL -     M, 
IF 2-0 

it^r^'^S-if a./ 
*Z J2T,       ?K 

(15.1) 

(15.2) 

(15.3) 

for the one-body distribution, 

io 1L rf% o (15.4) 
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4L"> X^ *l1 l^/r* 

for the two-body distribution, and 

(15.5) 

0? 2a 
+ X£*o (15_6) 

for the three-body distribution. 

The zeroth-order theory is very simple for the simply initial 

problem. Thus, 

£•(%)*e~*' °£ 0>) (15.7) 

S    r>* 

Fsrz) = ir£ (?.) 

To first order we have 

(15.8) 

a "solution" of this equation 1B the Vlasov condition: 

(15.9) 

(15.IO) 

The two-body function satisfies (15.5) which reduces readily 
to: 
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° (15.11) 

We now prove that the synchronized function: 

Is a solution of Bogolubov's equation: 

Substitution of (15.7) Into (15*8) leads to: 

which is an identity since one has: 

We now obtain from (15.6) a generalization of (15.7). The 

general solution of (15.6) is in fact 
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£*'{%)*< -**%, r. 
e***l\-™dAÜ4'M\ 

•{Je-***r}W*> 
(15.16) 

Finally, the synchronized function (15.12) is the asymptotic value 

in  £   of (15.16). Thus: 

*l. nv?t^ümt?r.) 
/*~    tx. 

(15.17) 

From (15.3) we can therefore select the solution 

(15.18) 

We have thus proved that Bogolubov's kinetic equations are 

compatible with our perturbation equations. 

B. Hydrodynamic Regime 

In collaboration with McCune and Morse (l8), a detailed cal- 

culation of the transients that precede the onset of the Navier- 

Stokes equations has been calculated with the local equilibrium 

model. Grad has independently considered the linearized 

Boltzmann equation. 

We want to emphasize here that there are definite conditions, 

analogous to the principle of absence of parallel motions for the 

validity of these results. Thus, we must have 
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to insure the Eulerion behavior of 

M-^IkfX 
fast enough, i.e. since 

and 

(15.19) 

(15.20) 

^^fc-r^Ji-c/r-Me>&^.^jo    (15.21, 

we must have 

\;CS(f-tf)^ t'fyl (15.22) 

We also note that the analogue of Bogolubov's problem of 

Section 9 is here the Enskog problem: 

oJ T Oj    for   r0-+oo 
(15.23) 

for K±o    . 
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SECTION 16 

TIME AVERAGE THEORY 

The purpose of this section is to describe connection of our 

theory to Kirkwood's time averaging procedure and to show how 

Kirkwood's procedure can in fact be made tc generate c complete 

hierarchy of tine averages capable of giving the desired results 

to arbitrary accuracy. 

We illustrate the scheme with the weak coupling expansion. 

We introduce 

f 
T-+IO 

(16.1) 

Similarly, 

Jo 

(16.2) 

and so on. 

From the weak coupling equation (7.32) we readily find: 

For the two-body function, (7.37) gives 

Therefore, in first order (7.33) reduces to 

(I6.3) 

(16.4) 
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But, with 

'#1 *0 

we find 

*o 

whence 

0, -i 
For the two-body function (7.38) gives 

-r,    -***. 
<F*> -- U. -i 

T-+00   7" 

/-e 2pAr« 

->0 

2 pOAO 

# 
r— IiTVs 

-iTf 
* 

(16.5) 

(16.6) 

(16.7) 

(16.8) 

(16.9) 

The singularity at /f = Ö  is determined without difficulty from 

the finite time behavior, thus 

Therefore, in second order, from (7.34) 

(16.10) 
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J2-,     J*,     J2r%    <— 
/.veraging over the fast time scale 

(16.11) 

9<£'X t ££ art) -L^'x-irn'i (16.12) 

If we further average over 2J  we have the Landau equation since 

= o (16.13) 
**,    /l 

The method of extension thus provides the mathematical 

foundation of Kirkwood's pr^edure. 

We have made of course ma^.y assumptions in this section about 

the behavior of the functions ir volved in regard to the properties 

of the time average. These assumptions in fact coincide with the 

previously derived conditions for the validity of the kinetic 

equations. 
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